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ABSTRACT 

In a previous paper ,  [7], the  au thors  together  with Gavin  Brown gave a 

comple te  descr ipt ion of the  values of e, r and  s for which n u m b e r s  normal  

in base t~ ~ are normal  in base 0 s. Here 0 is some reM n u m b e r  greater  t h a n  

1 and  x is normal  in base 0 if {/~nx} is uniformly d is t r ibu ted  modulo  1. 

T h e  a im of this  paper  is to complete  this  circle of ideas by describing those  

¢ and  ¢ for which normal i ty  in base ¢ implies normal i ty  in base ¢ .  We 

show, in fact,  t ha t  this  can  only h a p p e n  if b o th  are integer powers of some 

base ~ and  are thus  sub jec t  to the  cons t ra in ts  imposed  by the  resul ts  of  [7]. 

Th i s  paper  t h e n  comple tes  the  answer  to the  problem raised by Mend~s 

France in [12] of  de te rmin ing  those  ¢ and  ¢ for which normal i ty  in one 

implies normal i ty  in the  other.  

In t roduc t ion  

Let /~ be a real number greater than 1 (a base). We write B(t?) to indicate 

the set of those real numbers x which are normal in base 8; that is, ({XSn}) is 

uniformly distributed modulo 1, where (x} denotes the fractional part of x. We 

are concerned with the question of when B(/~) is contained in B(¢) for bases 
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and ¢. This problem was first raised for integer bases (in fact, for the bases 2 and 

3) by Steinhaus [19] in the New Scottish Book. The specific problem of Steinhaus 

was solved by Cassels [8] and Schmidt [17] independently. Schmidt showed that,  

for any pair of integer bases r and s, either there are positive integers p and q 

such that rP = s q or there are uncountably many real numbers normal in base r 

and non-normal in base s. 

For non-integer bases the problem is made harder and different by the fact that 

({x0n}) are not the results of applying the map x ~ {x0} iteratively to x. In [12], 

Mend~s France asks whether B(¢) C B(¢) implies that log C / log¢  is rational 

and conjectures that this is indeed the case when ¢ and tb are Pisot numbers. 

The aim of this paper is to prove the surprising result that this implication holds 

for all real numbers ¢ and ¢ greater than 1. Thus our main theorem is: 

THEOREM 1: Let  ¢ and ¢ be real numbers  greater than 1. I f  B ( ¢ )  C B(¢) then 

log ¢ / log  ~p is ra t ional  

It follows that  there is some 0 such that ¢ = W and ¢ = 08, for positive integers 

r and s, so that this theorem, taken in conjunction with the main theorem of 

the paper of Brown, Moran and Pollington [7], yields the following complete 

description of the ¢ and ¢ for which such an inclusion holds. 

THEOREM 2 (cf. [7, Theorem 1]): Let  ¢ and ¢ be real numbers  greater than 1. 

Then  an inclusion B(¢) C B(~b) holds when and only when there exis t  8, r and 

s such that  ¢ = O s and ¢ = O ~ and either 

(1) there exists  k such that  O k E Z and Q(0 ~) c Q(0s); or 

(2) there exists  k such that  O k + O - k  e Z and s divides r. 

The fact that B(O) C B(O'), for any positive integer r, when O is such that  

O k + 0 -k is in Z is due to Bertrand ([1] and [2]). 

The proof of Theorem 1 uses techniques similar to those found in [4]. Like all 

previous results of this nature (cf. [3], [4], [5], [6], [7], [10], [13], [14], [15], [17], 

[18]) the key is to find a probability measure # (a d i s c r i m i n a t o r y  measure )  

which assigns zero mass to B(¢) and full mass to B(¢), except, of course, when 

the conditions on ¢ and ¢ are met. The innovation introduced by Brown, Moran 

and Pearce in [4] was to use Riesz product measures in place of the Cantor-type 

measures used by other authors. Here again we shall use Riesz products as well 

as refinements of arguments presented in [7]. The proof, however, introduces 
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new techniques not found in previous papers, mainly to do with the choice of the 

terms in the Riesz product. 

The proof given here can be readily adapted (in fact with some simplifications) 

to give a new proof of the original theorem of Schmidt for integer bases. This 

proof, unlike the original Riesz product proof, avoids invoking Baker's Theorem 

on linear forms in logarithms, by explicitly using the continued fraction expansion 

of log ~/,/log ¢. 

P r e l i m i n a r i e s  

We begin by describing Riesz product measures. Rather than striving for full 

generality, we restrict ourselves to such measures of the specific kind that we 

need to prove the theorem. A more complete description of these measures and 

their properties may be found in [9]. 

First choose p such that CP > 3 and a set A of positive integers whose upper 

density is positive, that is, 

(1) lira sup 1 g--c,o -~{ne A:n <_N} > O. 

This set will be chosen later to fit the specific problem. Now consider the function 

(1 c o s t )  
FN(t) = 1-I (1 + cos(2 ¢P t)) • 

nCA,n<N 

This is positive and has integral f~_~ Fg(t)dt = 1. Thus the measure #N whose 

Radon-Nikodym derivative with respect to Lebesgue measure on R is FN is a 

probability measure. It can be shown, by considering Fourier transforms and the 

decay of the measure, that the sequence (#N) converges in the weak. topology 

to a measure #. This is the Riesz product measure which we shall use. Its salient 

feature is that its Fourier transform satisfies 

unless 

where ¢i = 0, +1. For such ci, 

= o 

"[ -- iEAE Ei~)pi 

( 2 )  

< 1 ,  
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and the remainder of the Fourier transform is obtained by linear interpolation. 

As we have indicated earlier, such measures are defined and studied in [8]. 

We need to show that this is, indeed, a discriminatory measure; that is, that  

It(B(¢)) = 0 and It(B(¢)) = 1. The former is relatively straightforward. 

LEMMA 1: For the measure It defined above, 

I t (B(¢))  = O. 

Proof'. Write Xn(t)  = e 2ripper. Then, by (2), these random variables are uncor- 

related, that  is E ( X n X ~ )  = E(X,~)E(-Xm), for all n # m. By the Strong Law 

of Large Numbers for such random variables, 

N 
1 

- E ( X . ) )  o 
n=l 

almost surely. However, by (1), 

limsup 1 n=lE(Xn)  1 . 1 N--oo -'N ~ = -~ l ~ s u p - ~ # { n  e A: n < N }  > O, 

so that, for It-almost all t, 

N 
1 E e2Wi~, t ~ 0 .  

n = l  

By Weyl's Criterion, t is not normal in base ¢ almost everywhere with respect 

to It. | 

The problem of proving that, unless l o g ¢ / l o g ¢  is rational, It(B(¢)) = 1 will 

concern us throughout most of the remainder of this paper. To handle this, we 

shall need to use the following Lemma of Davenport, Erd6s and LeVeque (see, 

for example, [16]). The particular form of this lemma we quote is tailored to the 

application we have in mind. 

LEMMA 2: Let (x~) be a sequence of real numbers tending to infinity and Jet It 

be a probability measure on R such that 

oo 1 iv 
(3) - x m ) )  < oo 

N=I n,rn=l 

for all integers k # O. Then (xnt) is uniformly distributed modulo 1 for #-almost 

all t. 
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P r o o f  o f  T h e o r e m  1 

The key idea is that  in order that  (3) should fail there will be many values of n 

and m such that  an inequality of the form 

(4) k(¢n _ cm) _ E eiCP~ < 1 
iEA,i<R(n,rn) 

holds, and, in view of (2), in many of these inequalities most of the e{s will be 

zero. This will allow us to obtain too many good rational approximations for 

log ¢ / l o g  ¢. We assume throughout that  eR(n,m) # 0 

We need to quantify these statements. Before we can do that,  it will be neces- 

sary to specify A. We shall assume that  a = log ¢ / l o g ¢  is irrational to obtain a 

contradiction and that  its continued fraction expansion is 

= [a0; al,  a2 , . . .  ] 

where, of course, all of the ai 's  are non-zero. We let 

P-r-~ = [a0; al ,  a2 , . . .  , a~] 
q~ 

denote the r th  partial  quotient. Now we define 

A = U(qr ,  2q~) n (q~, qr+l), 

where (a, b) denotes the interval of integers d such that  a < d < b. Observe that  

the sequence (q~) increases at least exponentially, and that  the upper density of 

A is positive, in fact, at  least 1/4. 

Now we construct the Riesz product tt as indicated previously and apply the 

preceding lemmas. First we note that  # (B(¢) )  = 0 by Lemma 1. Now we turn 

to the problem of showing that  t t(B(¢)) = 1. If not then the sum in (3) is 

infinite and there are infinitely many pairs (m, n) for which (4) holds. In fact, it 

is convenient to write 

\ j e A  / 

where r(n, m) is the number of non-zero ej ' s  and 

i 

(5) 1. 

I ieA,i<R(n,m) 
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We write r(n, m) = oo if no inequality of the form (5) exists. Note tha t  

1 

"'"~'~JJ~-< 2,( . . . .  ) 

Set t(n) = n / ( log  n) 2. Then, under the assumption tha t  the sum in (3) is infinite, 

1 1 

N 0 < n < N  O<_m<n-t(n) 

It follows tha t  

and hence tha t  

y" 
(30 

n-~ ~ 2,(~,m) 
n = l  O<rn<n--t(n) 

1 22s 

2S<_n<2S+ 10<m<n-t(n) 

for infinitely many  S, say S E A. For these S, then, 

' ( 2 s )  
E 2,~,,,,,,~ -> c ~ , 

O<m<n--t(n) 

for some constant  C > 0 and at least 2S/s 3 n's between 2 s and 28+5. Call 

the set of such n 's  G(S). For each of these n ' s  there are at least C'2S/S 4 m's 

satisfying 

O<m<_n- t (n )  and r(n,m)<21ogS, 

for some constant  C '  > 0. We nominate one such m = re(n) for each n in G(S). 
Fix n • G(S) and suppose that  (5) holds for m = m(n). Then, somewhere in 

the sequence 

~R(n), ~R(,~)-I, • • • , ~R(n)-,(s), 

where R(n)  = R(n, m(n)) and v(S) = 2S 2 log S, there is a block of S 2 zeros. 

Let us write V(n) for the largest i such tha t  ¢i is followed by a block of at 

least S 2 zeros. Since R(n) -  V(n) is less than v(S) and r(n, m(n)) < 2 log S, the 

number  of possible choices of 

ea(~), eR(~)-I,  • • • ,  ev(,,) 

does not exceed 
2S/2 

r(S) = (2v(S)) 2'°gs < s s  
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for large enough S. I t  follows that ,  for sufficiently large S and for some 

M 
W ~ Z gtkl/~-Pk' 

k=O 

where e' = 0,  + l ,  there are at  least 2 s/2 n's between 2 s and 2 s+ l  for which k 

(7) 

where 

kO~(1 + rn) = wOPFt(n)(1 + c%) 

]7_. I _< O-t(,,) _< e -C .Oog . ) -~ ,  

la,~l _< e -C'O°g'): ,  

for some positive constants  C and C' ,  and R(n)  E A. Taking logar i thms in (7), 

we obta in  

(8) n log ¢ + log k - log w = pR(n )  log '0 + w, ,  

where ]co.] = O(e-CO°g')~).  We now use one such value no, the smallest ,  to 

e l iminate  the constant  t e rm from (8) and obtain,  for 2 s/2 n 's  between 2 s and 

2 8+1 , t ha t  

(9) (n - n o ) l o g o  = p(R(n)  - R(no))log*/,  + co., - co,,o" 

For these n's,  set t ing v .  = n - no and u,~ = p (R(n)  - R(no)) ,  we have 

log O u .  - + ~n 
log ~/' v,~ 

where 

v,~ <_ 2 s and I .1 e x p ( - C s 2 )  - 

Since, by (8), R(n)  <_ C 'n  for some positive constant  C ,  it follows tha t  

1 1 
(10) [5-1 '~ c-C(l°gR(n))2 < ~ < 27_"--~ 

for sufficiently large S. By Lagrange ' s  Theorem u , / v ~  must  be a convergent of 

a .  Consequently,  there is some integer d so tha t  u,~ = dp~ and vn = dq,, where 

P-5-~ = [a0; a l , . . .  , a~]. 
q~ 
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Moreover,  
1 a P~ I 1 1 

R(n)-------- ~ > - __ [ > > q~ q~(q~ + q.+z) 2R(n)q~+l 

(see [11, Theo rem 9.9]), so tha t  R(n) < q~+z. Since R(n) • A, it is less t han  2q~ 

and un < 2pq~. I t  follows tha t  vn <_ Kq~ for some constant  K independent  of n. 

Now we have shown tha t  there are at  most  K t imes as m a n y  n 's  in G(S) as there 

are denomina tors  q~ from the convergents of a in the interval of integers [1, 2s]. 

Since the q~'s increase exponentially,  this is at  most  C S  for some constant  C, 

and so contradicts  the s t a tement  tha t  G(S) has 2 s/2 elements. The  assumpt ion  

t ha t  a is i r rat ional  is false and the proof  of the theorem is complete.  | 
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